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Abstract: Results of using vibration-based methods to detect gear tooth fatigue cracks are

presented. An experimental test rig was used to fail a number of spur gear specimens through

bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in

the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical

predictions of fatigue crack propagation direction and rate as a function of gear rim thickness.

The vibration signal from a total of three tests was monitored and recorded for gear fault detec-

tion research. The damage consisted of complete rim fracture on the two thin rim gears and

single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods

were applied to the vibration signal both on-line and after the tests were completed. The objec-

tives of this effort were to identify methods capable of detecting the fatigue crack, and determine

how far in advance of total failure positive detection was given. Results showed that the fault

detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin

rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack

in advance of tooth fracture; however, only three of the methods responded to the fatigue crack

in the early stages of crack propagation.
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Introduction: Drive train diagnostics is one of the most significant areas of research in rotorcraft

propulsion. The need for a reliable health and usage monitoring system for the propulsion system

can be seen by reviewing rotorcraft accident statistics. An investigation of serious rotorcraft acci-

dents that were a result of fatigue failures showed that 32 percent were due to engine and transmis-

sion components [1]. In addition, governmental aviation authorities are demanding that in the near

future the safety record of civil helicopters must match that of conventional fixed-wing jet aircraft.



This would require a thirtyfold increase in helicopter safety. Practically, this can only be accom-

plished with the aid of a highly reliable, on-line Health and Usage Monitoring (HUM) system.

A key performance element of a HUM system is to determine if a fault exists, as early and reliably

as possible. Research is thus needed to develop and prove various fault detection concepts and

methodologies.

For rotorcraft transmissions, a critical element of a reliable HUM system is the accurate detection

of gear tooth damage. A gear tooth fatigue crack, if undetected, can propagate into complete tooth

fracture or gear rim fracture, both of which can result in a potentially catastrophic failure of the

transmission system. This paper addresses this mode of gear failure by applying gear fault detec-

tion techniques to vibration data from several spur gear crack propagation fatigue tests, in which

crack length was monitored using special crack gages.

A number of methods have been proposed to provide early detection of gear tooth damage. Method

FM4 was developed by Stewart [2] to detect isolated damage on gear teeth. Methods NA4 and NB4

were developed at NASA Lewis [3,4] to detect general damage on gear teeth. McFadden [5] pro-

posed a method to detect gear tooth cracks using the instantaneous phase of the demodulated time

signal. A variation of the energy ratio reported by Swansson [6] was constructed to detect damage

using the energy in the frequency spectrum. Ma [7] proposed using the energy operator to track the

non-linear energy associated with a damaged gear. Verification of these detection methods with

experimental vibration data along with a comparison of their relative performance is an integral

step in the overall development of an accurate means to detect gear tooth damage.

In the view of the above, it becomes the objective of this research to determine the relative perfor-

mance of the detection methods as they are applied to experimental data from a spur gear fatigue

rig at NASA Lewis. The vibration signal from three spur gear crack propagation tests were moni-

tored and recorded. The primary purpose of these tests was to verify analytical predictions of

fatigue crack propagation direction and rate as a function of gear rim thickness [8]. Two of the tests

used thin rim gears, which resulted in complete rim fracture. One test used a standard full rim test

gear, which resulted in complete tooth fracture. Results of each gear fault detection method are

compared, and overall conclusions are made regarding the performance of the methods in detecting

the fatigue cracks in advance of total fracture.

Theory of Fault Detection Methods: All of the methods in this investigation utilized vibration

data that was processed as it was collected. The vibration data was converted to digital form and

time synchronously averaged to eliminate noise and vibration incoherent with the period of revolu-

tion of the spur test gear. The averaged data was then resampled by linear interpolation to provide

exactly 1024 samples over two complete revolutions of the test gear. This was done to optimize the

frequency resolution when converting the data to the frequency domain. This averaged and resampled

data was used as the input to the diagnostic methods discussed below.

FM4 was developed to detect changes in the vibration pattern resulting from damage on a limited

number of teeth [2]. A difference signal is first constructed by removing the regular meshing com-

ponents (shaft frequency and harmonics, primary meshing frequency and harmonics along with

their first order sidebands) from the time-averaged signal. The fourth normalized statistical mo-

ment (normalized kurtosis) is then applied to this difference signal. For a gear in good condition the
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differenceSignalwouldbeprimarily Gaussiannoise,resultingin a normalizedkurtosisvalueof 3
(nondimensional).Whenoneor two teethdevelopadefect(suchasacrack,or pitting), a peakor
seriesof peaksappearin thedifferencesignal,causingthenormalizedkurtosisvalueto increase
beyondthenominalvalueof 3.

NA4 is a methoddevelopedatNASA Lewis ResearchCenterto detecttheonsetof damage,and
alsoto continueto reactto thedamageasit increases[3]. A residualsignalis first constructedby
removingtheregularmeshingcomponents(shaftfrequencyandharmonics,primarymeshingfre-
quencyandharmonics)from the time-averagedsignal.The fourth statisticalmomentof the re-
sidualsignalis thendividedbythecurrentrun timeaveragedvarianceof theresidualsignal,raised
to the secondpower.This operationnormalizesthe kurtosisin NA4; however,it is normalized
usingthevarianceof theresidualsignalaveragedovertherunup to thecurrenttimerecord,where
NA4 is beingcalculated.With thismethod,thechangesin theresidualsignalareconstantlybeing
comparedto aweightedbaselinefor thespecificsystemin "good" condition.This allowsNA4 to
grow with theseverityof thefault until the averageof thevarianceitself changes.NA4 is dimen-
sionless,with a valueof 3,undernominalconditions.

NB4 is anotherparameterrecentlydevelopedatNASA Lewis [4]. NB4 is similarto NA4 in thatit
usesthe sameoperationto normalizethekurtosis.Themajor differenceis thatinsteadof usinga
residualsignal,NB4usestheenvelopeof abandpassedsegmentof thesignal.NB4 is ademodula-
tion technique,inwhichthesignalis first band-passfiltered aboutthedominantmeshingfrequency.
A bandwidthof +17 sidebands was used for the spur gear tests. Using the Hilbert transform, a

complex time signal is then created in which the real part is the band-pass signal, and the imaginary

part is the Hilbert transform of the signal. The envelope is the magnitude of this complex time

signal and represents an estimate of the amplitude modulation present in the signal due to the

sidebands. Amplitude modulation in a signal is most often due to periodically reoccurring transient

variations in the loading. The theory behind this method is that a few damaged teeth will cause

transient load fluctuations which can be observed in the envelope of the signal. NB4 is also dimen-

sionless, with a value of 3 under nominal conditions.

Another demodulation technique was developed to detect local gear defects, such as gear tooth

fatigue cracks [5]. The basic theory behind this technique is that a gear tooth defect will produce

sidebands that modulate the dominant meshing frequency. In this method the signal is band-passed

filtered about a dominant meshing frequency, including as many sidebands as possible. The Hilbert

transform is then used to convert the real bandpassed signal into a complex time signal or analytic

signal. Using the real and imaginary parts of the analytic signal, the instantaneous phase (I.P) can

be estimated from the filtered sidebands. Teeth with a fatigue crack will cause a lead or lag in tooth

contact during meshing, resulting in transient changes in the gear rotation. These transient changes

in rotation will dominate the I.P. function. The peak-to-peak level of the instantaneous phase over

one complete revolution of the gear is then determined in order to quantify the relative variance of

the I.R at each point in the run.

One method investigated is a variation of the energy ratio technique [6]. The energy ratio was

originally constructed to be a robust indicator of heavy uniform wear. The energy ratio is found by

dividing the standard deviation of the difference signal by the standard deviation of the regular

meshing components, as defined previously. In this study, the energy ratio is found by dividing the
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sum of thenon-mesh related amplitudes in the frequency spectrum by the sum of the mesh related

amplitudes (meshing frequencies plus first 6 sidebands). This parameter was used to quantify the

trend seen in the frequency spectrum of increasing amplitudes at non-mesh related frequencies as

the damage increased.

A technique using the "energy operator" was also investigated in this study. First developed for

speech production modeling, the energy operator was recently proposed for gear defect detection

recently by Ma [7]. The energy operator is a non-linear function that reacts to impulsive energy in

a vibration signal. An impulse in the time-averaged vibration signal caused by a damaged gear

tooth is reinforced by the energy operator, thus allowing the impulse to be more easily detected. In

this study, the time averaged signal is first band-passed filtered about the primary meshing fre-

quency using +20 sidebands. The discrete form of the energy operator, as given in Ref. 7 is then

applied to the band-passed signal. In order to detect any reinforced impulsive events in the energy

operator, the normalized kurtosis is then applied to the energy operator results. The normalized

kurtosis, as described earlier, reduces the results to one nondimensional number with the value of 3

under nominal conditions.

Apparatus and Gear Damage Review: The spur gears shown in Figs. 1 and 2 were part of a series

of crack propagation tests conducted on a spur gear fatigue test rig at NASA Lewis Research

Center. To initiate cracks, a notch was placed in the fillet region (loaded side) on one tooth of each

of the test gears. The notches were located at a radius of 40.49 mm (1.594 in.) on the fillet, which is

the position of the maximum tensile stress. The spur gear test rig was then used to fail the spur gear

specimen through bending fatigue. The primary purpose of these tests was to verify analytical

predictions of fatigue crack propagation direction and rate as a function of gear rim thickness [8].

To verify the crack growth rate, crack detection gages were installed on each side of the tooth with

the notch. As the crack propagated it broke through each of the nine crack wires that circumferentially
surrounded the fillet area on each side. The nine crack wires cover the first 1.62 mm (0.064 in.) of

crack length, thus allowing the crack magnitude and rate to be recorded as a function of cycles, or

run time. During the tests, vibration data from an accelerometer mounted on the gear shaft bearing

housing was captured using an on-line program running on a personal computer with an analog to

digital conversion board and anti-aliasing filter. The 28-tooth instrumented test spur gear meshes

with a 28-tooth standard rim spur gear at a nominal speed of 10 000 rpm in the fatigue test rig. The

spur gears have a face width of 6.35 mm (0.25 in.) and a pitch diameter of 88.9 mm (3.50 in.). Each

test started with a one hour break-in period at a low load level, after which the load was increased

and the test continued until complete fracture occurred. A test load of 89 N-m (786 in-lbs) was used

for runs 1 and 2. For run 3, a test load of 136 N-m (1200 in-lbs) was used.

Runs 1 and 2 used the thin rim gear geometry illustrated in Fig. 1. Crack length, as recorded by the

crack gages, is plotted as a function of run time for run 1 in Fig. 3. The first hour was the break-in

period, thus the crack started on the rear side only at approximately 1.75 hours after full load was

applied. As seen in this figure, the crack gages cover approximately the first 50% of the total crack

length to failure. For runs 1 and 2, failure is defined as the complete fracture of the gear rim, as seen

in Fig. 1. The lines connecting the last crack gage points to failure is for reference purposes only.

Due to instrumentation problems the crack gages did not function correctly for run 2, and no crack

length plot is available.
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Run 3 used the full rim gear geometry illustrated in figure 2. Crack length is plotted as a function of

run time for run 3 in figure 4. The break-in period is not included in this plot, thus the crack started

shortly after the full load was applied. In this run, the crack gages cover only the first 18% of the

total crack length to failure. For run 3 failure is defined as complete fracture of the tooth, as seen in

figure 2. Although the crack gages only cover 18% of the total crack length, they cover 75% of the

time from the start of the crack to failure. Two regions can be seen in figure 4, with the first repre-

senting a moderate crack growth rate (first 75% of propagation time). The last 25% of the crack

propagation time represents a region of accelerated crack growth rate, where the final 82% of total

crack length is achieved.

Discussion of Results: Results of applying the diagnostic methods to crack propagation runs 1, 2,

and 3 are illustrated in Figs. 5, 6, and 7, respectively. Figure 8 gives the frequency spectrum of the

time-averaged signal for each of the runs at the start of each test, following the one hour break-in

period. Figure 9 illustrates the time-averaged vibration plots for the last data point (end of test

point) from each of the runs. The vibration plots in this figure are over one complete revolution of

the test gear.

Based on the results, the gear fault detection methods were unable to give early indication of the

fatigue crack in the thin rim gear tests. As seen in Fig. 5, the diagnostic parameters were applied to

the vibration data from run 1 after the initial one hour break-in period. Each of the parameters are

plotted as a function of run time and, at the top of the plots, as a function of crack length also. As

seen in Fig. 5, with the exception of the kurtosis of the energy operator, only parameters NA4

(Fig. 5(b)) and NB4 (Fig. 5(c)) reacted to the damage. However, NA4 and NB4 were unable to

detect the crack until complete rim fracture resulted, thus giving no advanced warning of the im-

pending failure. The kurtosis of the energy operator appears to have reacted to the crack early in the

run, as seen in Fig. 5(f). This very large reaction at the start of crack propagation is not repeated in

runs 2 and 3. It is unclear at this time as to why this ideal type of reaction occurred only on run 1.

Figure 6 plots the results of the parameters for run 2, also a thin rim gear test. Although no crack

propagation plot is available for this run, the results are similar to those seen in run 1. The fault

detection methods give positive indication of the damage only at or near completion of the test.

All of the gear fault detection methods reacted to the fatigue crack prior to complete tooth fracture

in the full rim spur gear test. The plots in Fig. 7 do not include the initial one hour break-in period

for run 3. Each of the parameters are plotted as a function of run time, and as a function of crack

length (top of plot). As seen in Fig. 7, all of the parameters react substantially to the crack in the

region of accelerated crack growth. As stated earlier this is the region where the last 82% of total

crack length is achieved in only 25% of the total crack growth time. Of the normalized,

nondimensional parameters, NB4 peaks at a value of 107, the kurtosis of the energy operator peaks

at 32, NA4 peaks at 17, and FM4 peaks at a value of 5. All of these parameters are referenced to the
value of 3 under nominal conditions.

Although all of the methods were able to detect the crack during the last stage of crack propagation

in run 3, more advanced warning of the crack is needed for this potentially catastrophic event. As

seen in Fig. 7, NA4 (Fig. 7(b)), NB4 (Fig. 7(c)), and the kurtosis of the energy operator (Fig. 7(f))

are the only parameters that show an increasing trend above the nominal value during the first

phase of crack propagation. A method of establishing an exceedance level was used to determine



relativewarningtimesfor thethreeparameters.This methodusesavalueof five standarddevia-
tionsover themeanvaluefor theexceedancelevel, wherethemeanlevel andstandarddeviation
arebasedonthedataprior to crackgrowth[9].As seenin Fig. 7(f), basedonthisexceedancelevel,
thekurtosisof theenergyoperatorgivestheearliestwarningof damage.It reachestheexceedance
level at 0.083hours,or at 46% of thetotal crackpropagationtime, at which thecrackhasonly
advancedto approximately7%of its total length.As seenin Figs.7(b)and(c),NA4 andNB4reach
theexceedancelevel at 0.111hours,or at 62%of total crackpropagationtime, atwhich thecrack
hasonly advancedto approximately11%of its total length.Thewarningtimesbasedon thesethree
parametersare nearlytwiceaslong asthatgivenbytheotherfault detectionmethods.In addition,
NA4, NB4, andkurtosisof the energyoperatorwere ableto detectthe crackduring the more
moderatecrackgrowthrateregion.

The additionalcomplianceassociatedwith the thin rim gearsalongwith the geometryof these

gears may have inhibited the parameters from detecting the fatigue crack in runs 1 and 2. Figure 8

plots the frequency spectrum of the first data point after the break-in period for each run. The

spectrums from the thin rim gear tests, Figs. 8(a) and (b), show a more complex frequency distribu-

tion as compared to the spectrum from the full rim gear test (Fig. 8(c)). As seen in Fig. 8(c), the

frequency spectrum is primarily composed of the primary gear mesh frequency (fl = 4.7 kHz),

harmonics of the mesh frequencies, and the corresponding sidebands about these frequencies. The

non-uniform geometry of the thin rim gear coupled with the added compliance associated with the

thin rim will tend to produce a more complex meshing pattern than a standard rim gear. This is

illustrated in the plots shown in Fig. 9. All of the plots in this figure are of the last data point for

each run, thus complete rim fracture has occurred for runs i and 2 (Figs. 9(a) and (b)), and complete

tooth fracture has occurred for run 33 (Fig. 9(c)). The tooth fracture induced impulse seen in Fig. 9(c)

is clearly visible and highly localized. The rim fracture induced impulse seen in Figs. 9(a) and (b)

are nonlocalized and much more difficult to distinguish in the signal. The additional flexibility of

the thin rim gears may not allow the cracked tooth to create the impulse in the vibration signal, and

thus compensates for the fault until complete fracture. In addition, the nonuniform geometry of the

thin rim gear complicates the vibration signal, possibly masking the dynamics of the tooth crack.

Conclusions: Based on the results of applying a variety of gear fault detection techniques to ex-

perimental data from spur gear crack propagation tests, the following conclusions can be made.

(1) In the thin-rim spur gear tests, the gear fault detection techniques investigated were unable to

give early indication of the fatigue crack prior to rim fracture. The additional compliance associ-

ated with the thin-rim gears may have compensated for the crack, thus minimizing the dynamic

influence of the crack on the vibration signal until total rim fracture.

(2) In the full rim spur gear test, all of the techniques investigated reacted to the fatigue crack, in

varying degrees, prior to complete tooth fracture. The more robust reactions to the fatigue crack

occurred in the last stages of crack propagation, as the crack accelerated to complete fracture.

(3) The methods NA4, NB4, and the energy operator gave the earliest reactions to the fatigue crack

in the standard spur gear test. These techniques reacted to the fatigue crack during the early stages,

as the crack was growing at a moderate rate.
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Figure 1.--Gear geometry configuration for runs I and 2.
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Figure 2.--Gear geometry configuration for run 3.

100- o Front side ;_
f- / i
03 [] Rear side // /

80 - x Complete rim / /
/ /

fracture / /60- /

o o_//
•- 20-
ID
Q.

0 I I I
0 2 4 6

Run time, hr

Figure 3.--Crack length as a function of
run time for run 1.

O O

I
8

100
t--

03

._ __ 80

_ 60

o o 40

o

(1)
Q.

o Front side

[] Rear side

x Complete tooth
fracture

//

- i//I
Ii

- I i
I i

- / /
I I

0 L
0.00 0.04 0.08 0.12 0.16

Run time, hr

Figure 4.--Crack length as a function of
run time for run 3.



_

Crack length
(percent of total length to fracture,

front (F) & rear (R) gages)
50

10-

Crack length

(percent of total length to fracture,

front (F) & rear (R) gages)
50

_E
LL.

_

4

3

2-

1-

(a)
0 o

I I I I
2 4 6 8

Run time, hr

Z

8

6

4

2

0 o

m

(b) i I I I

2 4 6 8

Run time, hr

50-

50

1_ 3_ 5_ 21F33[;00

40-

30-
,¢
m

z 20-

10-

oo(C) 
2 4 6 8

Run time, hr

50

I I I I
2 4 6 8

Run time, hr

0.25

0.20
O

,B

0.15

 O.lO
E

0.05

0.00

m

(e) i

0

50

I I I I
2 4 6 8

Run time, hr

50

FIIFI

o.e 100-
_, 80- _

Run time, hr

Figure 5.mResponse of gear fault detection parameters for run 1.

9



m

I_1 I I I I
I_ LO LO _" 03 04 I-- Q

tTVN

t7_-4

tO

!-- r"

c;rr

o. I_ I
O

O4 O4

tO

I- ¢-

E

tn

-dn"

O

)O

i .
143 O _ O O

eseqd snoeuelue_su!

jo _teed-o;-_leed

to

I

I
I

O L

r-

-drr

I_l I I I I od
O3 ¢X) I_ ¢¢) 143 _1" O3 ¢_1 _--

_SN

i m

i

O lb.

drr

LO O _ O Lf)

JO:_eJedo _6JaUe jo s!so_Jn_l

o._

da: =

E

Q.

C

.g

0

T- 0

14") O _O O _f) O _ O O

o o o c_ d c_ c_ o

o!;e_/[6Jeu3



*d"

LL

Crack length
(percent of total length to fracture, front gage)

11 15

3.55.88.111Ll13/181008- 1 1 1 1 1

4

3 "

2-

1 -

0 (a)
0.00

I I I I
0.04 0.08 0.12 0.16

Run time, hr

Z

Crack length
(percent of total length to fracture, front gage)

11 15
3.5 5.88.1

1 1 111131118100118

16

14

12

10

8

6

4

2
0
0.00

_+5_

0.04 0.08 0.12 0.16

Run time, hr

m
z

120

100

8O

1115
3.5 5.88.1 /18

1 1 I [113 I I 1001

60-

40 _ _+5_r

0.00 0.04 0.08 0.12 0.16

Run time, hr

15

(9
¢9

N--

o {10

6_
_ C

.c_ 0 (d)
0.00

1115

I I I I
0.04 0.08 0.12 0.16

Run time, hr

1115

3.55.88.11113[181000.30- 1 1 1 1 1
f--

0.25

o 0.20

>, 0.15

(9
_- 0.10 -

LU

0.05 -

o.oo (e)
0.00

X+5_

t = .1444 -_
I I I

0.04 0.08 0.12 0.16 _" 0.00 0.04 0.08 0.12 0.16

Run time, hr Run time, hr

Figure 7.--Response of gear fault detection parameters for run 3.

1115
3.5 5.8 8.1 /13/18 100

=- 1 1 11111 1o 35 7

0

(9
e,-
(9

.__
ffi
0

11



bo

-n Vibration amplitude Vibration amplitude Vibration amplitude





Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathedng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1996 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture

6. AUTHOR(S)

James J. Zakrajsek and David G. Lewicki

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Lewis Research Center

Cleveland, Ohio 44135-3191

and

Vehicle Propulsion Directorate

U.S. Army Research Laboratory
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001
and

U.S. Army Research Laboratory

Adelphi, Maryland 20783-1145

WU-505-62-36

1L162211A47A

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10075

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-107145

ARL-TR-970

11. SUPPLEMENTARY NOTES

Prepared for the 1996 Technology Showcase on Integrated Monitoring, Diagnostics and Failure Prevention sponsored by the Society for

Machinery Failure Prevention Technology, Mobile, Alabama, April 22-26, 1996. James J. Zakrajsek, NASA Lewis Research Center

and David G. Lewicki, Vehicle Propulsion Directorate, U.S.Army Research Laboratory, NASA Lewis Research Center. Responsible

person, James J. Zakrajsek, organization code 2730, (216) 433-3968.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 37

This publication is available from the NASA Center for Aerospace Information, (301) 621_)390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was

used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was

initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify

analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration

signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of

complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-

based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The

objectives of this effort were to identify methods capable of detecting the fatigue crack, and determine how far in advance

of total failure positive detection was given. Results showed that the fault detection methods failed to respond to the

fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods

responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue

crack in the early stages of crack propagation.

14. SUBJECT TERMS

Gear; Fatigue; Diagnostics; Failure prediction

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
14

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102





National Aeronautics and

Space Administration

Lewis Research Center

21000 Brookpark Rd.
Cleveland, OH 44135-3191

Official Business

Penalty for Private Use $300

POSTMASTER: If Undeliverable-- Do Not Return


